認知科学
Online ISSN : 1881-5995
Print ISSN : 1341-7924
ISSN-L : 1341-7924
ショートノート
ヒューマノイドロボットに対するミラーニューロンシステムの反応
松田 剛神田 崇行石黒 浩開 一夫
著者情報
ジャーナル フリー

2012 年 19 巻 4 号 p. 434-444

詳細
抄録

Many types of humanoid robots have been developed recently, and they are mainly
designed for social interaction with human beings. The most communicative partners
for human beings are other humans. Therefore, to develop successful communicative
robots, it is important to know how closely they resemble a human. In the present
study, we attempted to evaluate the human likeness of a humanoid robot (Robovie)
by using near-infrared spectroscopy (NIRS). Since activity of the human mirror neuron
system (MNS) is thought to reflect the perceived human likeness of observed agents,
we compared MNS activity during observations of an action performed by a human
and the robot. Seven male and ten female participants were included in the study, and
eventually, fourteen of them were analyzed. NIRS probes were placed at the bilateral
premotor and primary motor areas, which are components of the MNS. Under obser
vation conditions, stimuli were presented live or on a video monitor; there were four
observation conditions, namely, live-human, live-robot, video-human, and video-robot.
After the observation conditions, the participants executed the same action performed
by the human agent in the observation conditions by themselves (execution condition).
We identified the NIRS channels in which significant activation was induced under both
the observation and execution conditions, and used this information to determine the
possible regions reflecting MNS activity. We found no significant effect of the agent
(human/robot) on MNS activity, and this indicated that MNS response in the motor
related area is relatively analogous irrespective of the agent (human/robot). However,
the effect of the mode of presentation (live/video) was found in a few channels. Two
channels corresponding to the left ventral premotor cortex were activated more strongly
in the live condition than in the video condition, particularly when the agent was the
human. In contrast, one channel corresponding to the right primary motor cortex was
activated more strongly in the video condition than in the live condition only when the
agent was the robot. These findings suggest that live presentation of action is necessary
to reveal true brain activity in actual situations.

著者関連情報
© 2012 日本認知科学会
前の記事 次の記事
feedback
Top