Journal of Electrophoresis
Online ISSN : 1349-9408
Print ISSN : 1349-9394
ISSN-L : 1349-9394
Full Paper
Proteogenomic approach to drug targets in osteosarcomas with different original sites
Rei NoguchiYuki YoshimatsuTakuya OnoAkane SeiTadashi Kondo
Author information
Supplementary material

2021 Volume 65 Issue 1 Pages 1-11


Regulation of kinase activity plays a crucial role in carcinogenesis and cancer progression. Mutations in the activity domain of kinases are extensively investigated as therapeutic targets. We examined anti-proliferative anti-cancer drugs and drug targets via the multi-omics approach: (i) comprehensive kinase activity assay, (ii) high-throughput drug screening, and (iii) genomic sequencing. Two osteosarcomas cell lines, NCC-OS1-C1 and NCC-ESOS1-C1 derived from bone and soft tissue respectively, were used. Genetic alterations were examined by NCC Oncopanel based on the next-generation sequencing technology and SNP array. One hundred kinases were monitored by the PamStation 12, an in vitro kinase assay. The anti-proliferative effects of 214 FDA-approved anti-cancer drugs were examined. Mutation of PIK3CA and deletion of CDKN2A were identified in NCC-ESOS1-C1 and druggable genetic alterations were not identified in the NCC-OS1-C1. PI3K-AKT pathway or CDKN2A inhibitors did not show significant effects on these cell lines. Comprehensive kinomic assay revealed no remarkable differences on these osteosarcoma cells (R2=0.99). The two cells shared similar kinase activity profiles for FES, FER, PDGFR-β, VEGFR2, and Wee1. Anti-proliferative effects of anti-cancer drugs on NCC-OS1-C1 and NCC-ESOS1 cells showed remarkable differences. Significant responses to romidepsin and trabectedin were observed for both. Eribulin was effective on NCC-OS1-C1; ifosfamide and dacarbazine were effective on NCC-ESOS1-C1 only. Hence, investigating kinase activities and genetic alterations will lead to predict the effects of kinase inhibitors. The different status of kinase mutations, activities, and response to inhibitors should be integrated. Multi-omics experiments and data integration are crucial in understanding cancer progression and developing novel therapies.

Information related to the author
© 2021 by Japanese Electrophoresis Society
Next article