Journal of Electrophoresis
Online ISSN : 1349-9408
Print ISSN : 1349-9394
ISSN-L : 1349-9394
Full Paper
Proteogenomic approach to drug targets in osteosarcomas with different original sites
Rei NoguchiYuki YoshimatsuTakuya OnoAkane SeiTadashi Kondo
Author information
JOURNAL FREE ACCESS
Supplementary material

2021 Volume 65 Issue 1 Pages 1-11

Details
Abstract

Regulation of kinase activity plays a crucial role in carcinogenesis and cancer progression. Mutations in the activity domain of kinases are extensively investigated as therapeutic targets. We examined anti-proliferative anti-cancer drugs and drug targets via the multi-omics approach: (i) comprehensive kinase activity assay, (ii) high-throughput drug screening, and (iii) genomic sequencing. Two osteosarcomas cell lines, NCC-OS1-C1 and NCC-ESOS1-C1 derived from bone and soft tissue respectively, were used. Genetic alterations were examined by NCC Oncopanel based on the next-generation sequencing technology and SNP array. One hundred kinases were monitored by the PamStation 12, an in vitro kinase assay. The anti-proliferative effects of 214 FDA-approved anti-cancer drugs were examined. Mutation of PIK3CA and deletion of CDKN2A were identified in NCC-ESOS1-C1 and druggable genetic alterations were not identified in the NCC-OS1-C1. PI3K-AKT pathway or CDKN2A inhibitors did not show significant effects on these cell lines. Comprehensive kinomic assay revealed no remarkable differences on these osteosarcoma cells (R2=0.99). The two cells shared similar kinase activity profiles for FES, FER, PDGFR-β, VEGFR2, and Wee1. Anti-proliferative effects of anti-cancer drugs on NCC-OS1-C1 and NCC-ESOS1 cells showed remarkable differences. Significant responses to romidepsin and trabectedin were observed for both. Eribulin was effective on NCC-OS1-C1; ifosfamide and dacarbazine were effective on NCC-ESOS1-C1 only. Hence, investigating kinase activities and genetic alterations will lead to predict the effects of kinase inhibitors. The different status of kinase mutations, activities, and response to inhibitors should be integrated. Multi-omics experiments and data integration are crucial in understanding cancer progression and developing novel therapies.

Information related to the author
© 2021 by Japanese Electrophoresis Society
Next article
feedback
Top