The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis (Henneberg 1906) comb. nov., Acetobacter lovaniensis (Frateur 1950) comb. nov., and Acetobacter estunensis (Carr 1958) comb. nov.
Puspita LisdiyantiHiroko KawasakiTatsuji SekiYuzo YamadaTai UchimuraKazuo Komagata
Author information
JOURNALS FREE ACCESS

2000 Volume 46 Issue 3 Pages 147-165

Details
Abstract

Thirty-one Acetobacter strains obtained from culture collections and 45 Acetobacter strains isolated from Indonesian sources were investigated for their phenotypic characteristics, ubiquinone systems, DNA base compositions, and levels of DNA-DNA relatedness. Of 31 reference strains, six showed the presence of ubiquinone 10 (Q-10). These strains were eliminated from the genus Acetobacter. The other 25 reference strains and 45 Indonesian isolates were subjected to a systematic study and separated into 8 distinct groups on the basis of DNA-DNA relatedness. The known species, Acetobacter aceti, A. pasteurianus, and A. peroxydans are retained for three of these groups. New combinations, A. orleanensis (Henneberg 1906) comb. nov., A. lovaniensis (Frateur 1950) comb. nov., and A. estunensis (Carr 1958) comb. nov. are proposed for three other groups. Two new species, A. indonesiensis sp. nov. and A. tropicalis sp. nov. are proposed for the remaining two. No Indonesian isolates were identified as A. aceti, A. estunensis, and A. peroxydans. Phylogenetic analysis on the basis of 16S rDNA sequences was carried out for representative strains from each of the groups. This supported that the eight species belonged to the genus Acetobacter. Several strains previously assigned to the species of A. aceti and A. pasteurianus were scattered over the different species. It is evident that the value of DNA-DNA relatedness between strains comprising a new species should be determined for the establishment of the species. Thus current bacterial species without data of DNA-DNA relatedness should be reexamined for the stability of bacterial nomenclature.

Information related to the author
© 2000 by The Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Previous article Next article
feedback
Top