The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Full Papers
Molecular characterization and transcriptional regulation of nitrate reductase in a ruminal bacterium, Selenomonas ruminantium
Narito AsanumaMiwa IwamotoTakahiro YoshiiTsuneo Hino
Author information
JOURNAL FREE ACCESS

2004 Volume 50 Issue 2 Pages 55-63

Details
Abstract

Nitrate reductase (NaR) of a strain of Selenomonas ruminantium was purified, and the gene encoding NaR (nar) was sequenced. The 6.4 kbp nar gene consisted of narG, H, J, and I in this order. The deduced amino acid sequences of these subunits resembled those of membrane-bound nitrate reductase-A reported for Escherichia coli. It was shown that narG, H, J, and I are transcribed as a single polycistronic message (nar operon). The level of intracellular nar-mRNA was higher when S. ruminantium was grown with nitrate than when grown without nitrate, suggesting that nar transcription is enhanced by nitrate. The level of nar-mRNA, which was in parallel to the amount of NaR per cellular nitrogen, was suggested to be enhanced in response to the deficiency of energy and electron supply. Therefore, NaR synthesis in S. ruminantium appeared to be regulated at the transcriptional level in response to the availability of energy and electrons. S. ruminantium reduced nitrate and fumarate simultaneously with no significant effect of fumarate on nar transcription. Addition of fumarate stimulated nitrate reduction, which was caused by increased cell growth because of increased acquirement of ATP via electron transport phosphorylation coupled with fumarate reduction.

Content from these authors
© 2004 by The Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Next article
feedback
Top