The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Full Papers
Vaccine efficacy of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Edwardsiella ictaluri against E. tarda in tilapia
Thanh Trung CaoMing-An TsaiChung-Da YangPei-Chyi WangTsun-Yung KuoHsu-Chung Gabriel ChenShih-Chu Chen
著者情報
ジャーナル フリー

2014 年 60 巻 6 号 p. 241-250

詳細
抄録

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), derived from the outer-membrane protein (OMP) fraction, has been used as a potential candidate for vaccine development. The gene-encoding 37 kDa GAPDH outer membrane protein (OMP) from Edwardsiella ictaluri was amplified using polymerase chain reaction (PCR) and was cloned and expressed in Escherichia coli BL21 (DE3). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), Western blotting, and nucleotide and amino acid sequencing were used to analyze the expressed antigenic protein and gene encoding this protein. Comparative DNA and protein sequence analysis of GAPDH from E. ictaluri GAPDHs from several Gram-negative bacterial species within the Enterobacteriaceae family revealed that the GAPDHs within this group are highly conserved and share a sequence similarity of 75−100% with E. ictaluri GDPDH. Rabbit antiserum raised against the E. ictaluri recombinant GAPDH (rGAPDH) protein recognized purified GADPH, indicating that it has a strong immunogenicity. Tilapia fish were intraperitoneally immunized with formalin-killed E. ictaluri whole cells, and rGAPDH (30 μg fish−1) from E. ictaluri, both of which were emulsified in ISA 763A adjuvant. At 3 months after immunization, fish were challenged with the E. tarda strain to assess vaccine efficacy; the relative percent survival (RPS) values were found to exceed 71.4%. The specific mean antibody titer log2 level of groups vaccinated with rGAPDH at 3 months was significantly higher than that of non-vaccinated fish (control group). Therefore, this recombinant protein can be considered a multi-purpose candidate vaccine against several pathogenic bacteria.

著者関連情報
© 2015, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
前の記事 次の記事
feedback
Top