The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
Full Papers
Thermo and halo tolerant laccase from Bacillus sp. SS4: Evaluation for its industrial usefulness
Gursharan SinghSukhpal SinghKavleen KaurShailendra Kumar AryaPrince Sharma
Author information
JOURNALS FREE ACCESS

2019 Volume 65 Issue 1 Pages 26-33

Details
Abstract

Laccases are unable to oxidize the non-phenolic components of complex lignin polymer due to their less redox potential (E0). Catalytic efficiency of laccases relies on the mediators that potentiates their oxidative strength; for breaking the recalcitrant lignin. Laccase from Bacillus sp. SS4 was evaluated for its compatibility with natural and synthetic mediators. (2 mM). It was found that acetosyringone, vanillin, orcinol and veratraldehyde have no adverse effect on the laccase activity up to 3 h. Syringaldehyde, p-coumaric acid, ferulic acid and hydroquinone reduced the enzyme activity ≥50% after 1.0 h, but laccase activity remained 100 to ~120% in the presence of synthetic mediators HBT (1-Hydroxylbenzotrizole) and ABTS. (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) after 3 h. MgSO4 and MnSO4 (40 mM) increased the enzyme activity 3.5 fold and the enzyme possessed ≥70% activity at a very high concentration. (2 M) of NaCl. The enzyme retained 40–110% activity in the presence of 10% DMSO (dimethylsulfoxide), acetone, methanol and ethyl acetate. On the other hand, CuSO4 (100 μM) induced the laccase production 8.5 fold without increasing the growth of bacterial cells. Laccase from SS4 appropriately decolorized the indigo carmine (50 μM) completely in the presence of acetosyringone (100 μM) within 10 min and 25% decolorization was observed after 4 h without any mediator.

Information related to the author
© 2019, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Previous article Next article
feedback
Top