The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Full Papers
Salt stress increases carotenoid production of Sporidiobolus pararoseus NGR via torulene biosynthetic pathway
Chunji LiBingxue LiNing ZhangNa WeiQifan WangWenjing WangYiwei XieHongtao Zou
著者情報
ジャーナル フリー
電子付録

2019 年 65 巻 3 号 p. 111-120

詳細
抄録

Carotenoids represent a diverse class of aliphatic C40 molecules with a variety of applications in the food and pharmaceutical industries. Sporidiobolus pararoseus NGR produces various carotenoids, including torulene, torularhodin and β-carotene. Salt stress significantly increases the torulene accumulation of S. pararoseus NGR. However, little is known, about the molecular mechanisms underlying the increased torulene biosynthesis. In this work, we investigated the effects of NaCl treatment on the contents of carotenoids (both qualitatively and quantitatively) and transcriptome. A total of 12.3 Gb of clean bases were generated in six cDNA libraries. These bases were de novo assembled into 9,533 unigenes with an average length of 1,654 nt and N50 of 2,371 nt. Transcriptome analysis revealed that of 3,849 differential expressed genes (DEGs) in response to salt stress, 2,019 were up-regulated, and 1,830 were down-regulated. Among these DEGs, we identified three carotenogenic genes crtE, crtYB, and crtI. In addition, fourteen candidate genes were predicted to participate in the conversion from torulene to torularhodin. Our findings should provide insights into the mechanisms of carotenoid biosynthesis and salt-tolerance of S. pararoseus NGR.

著者関連情報
© 2019, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
次の記事
feedback
Top