The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Full Papers
Generation of hydrogen sulfide from sulfur assimilation in Escherichia coli
Naoyuki TanakaTomoyuki HatanoSoshi SaitoYukari WakabayashiTetsuya AbeYusuke KawanoIwao Ohtsu
Author information
JOURNAL FREE ACCESS
Supplementary material

2019 Volume 65 Issue 5 Pages 234-239

Details
Abstract

Many organisms produce endogenous hydrogen sulfide (H2S) as a by-product of protein, peptide, or L-cysteine degradation. Recent reports concerning mammalian cells have demonstrated that H2S acts as a signaling molecule playing important roles in various biological processes. In contrast to mammals, bacterial H2S signaling remains unclear. In this work, we demonstrate that Escherichia coli generates H2S through the assimilation of inorganic sulfur, without L-cysteine degradation. Comparison of phenotypes and genomes between laboratory E. coli K-12 strains revealed a major contribution of CRP (a protein that controls the expression of numerous genes involved in glycolysis) to H2S generation. We found that H2S was produced by cells growing in a synthetic minimal medium containing thiosulfate as a sole inorganic sulfur source, but not in a medium only containing sulfate. Furthermore, E. coli generated H2S in a CRP-dependent manner as a response to glucose starvation. These results indicate that CRP plays a key role in the generation of H2S coupled to thiosulfate assimilation, whose molecular mechanisms remains to be elucidated. Here, we propose a potential biological role of the H2S as a signaling mediator for a cross-talk between carbon and sulfur metabolism in E. coli.

Content from these authors
© 2019, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Previous article Next article
feedback
Top