The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Full Papers
Isolation and characterization of Lignin-derived monomer degraders under acidic conditions from tropical peatland
Muhammad Imran Firdaus KamardanEzzah Atikah Binti MarsidFazrena Nadia Md AkhirMuhamad Ali Muhammad YuzirNor’azizi OthmanHirofumi Hara
Author information
JOURNAL FREE ACCESS
Supplementary material

2022 Volume 68 Issue 3 Pages 117-124

Details
Abstract

Tropical peatlands account for one of the largest carbon stores in the form of organic matter due to the accumulation of plant litter and waterlogged conditions. Recent anthropogenic disturbances, such as forest fires, agricultural conversion and drainage, in tropical peatlands have caused a vast amount of carbon to be released into the atmosphere, and microbial activities are impacted by these changes. A recent study showed that many phenol- and lignin-degrading bacteria prefer alkaline and neutral pH conditions, while tropical peatland conditions are acidic, possibly changing the mechanisms of the utilization of organic matter from peat soil. The purpose of this study was to isolate and characterize phenolic compound-degrading bacteria from tropical peatlands under acidic conditions due to the lack of information on how the biological processes of microorganisms occur in this unique habitat. Two isolates show the capability to utilize phenolic aldehydes based on building blocks of lignin that are abundant in tropical peatlands, including hydroxyphenyl, guaiacyl and syringyl units. The identification of these isolates by 16S rRNA gene sequence shows that strain S38 is similar to Stenotrophomonas sp., while strain S46 is similar to Burkholderia sp. Further characterization of these isolates shows their ability to degrade 4-hydroxybenzaldehyde and vanillin into phenolic acids within 24 hours of incubation and syringaldehyde within 7 days of incubation. In conclusion, these isolated bacteria show the ability to withstand the acidic environment of tropical peatlands and utilize lignin monomers through unknown metabolic pathways.

Content from these authors
© 2022 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Next article
feedback
Top