The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Full Papers
Improvement of cellulosic biomass-degrading enzyme production by reducing extracellular protease production in Aspergillus aculeatus
Yuko YoshimuraYuri KobayashiTakashi KawaguchiShuji Tani
Author information
JOURNAL FREE ACCESS
Supplementary material

2022 Volume 68 Issue 3 Pages 143-150

Details
Abstract

We investigated the effects of deleting major extracellular protease-encoding genes on cellulolytic and xylanolytic enzyme production in Aspergillus aculeatus. We first investigated the effect of prtT deletion, a positive transcription factor for extracellular protease-encoding genes in Aspergillus, on extracellular protease production in A. aculeatus. Genetic analysis indicated that among the major extracellular proteases, pepIIa and pepIIb are controlled by PrtT, but pepI is not. Thus, we generated a mutant with deletion of the two genes prtT and pepIprtTΔpepI) and one with deletion of the three genes pepI, pepIIa, and pepIIbpepIΔIIaΔIIb). Extracellular protease activities decreased in both ΔprtTΔpepI and ΔpepIΔIIaΔIIb to 3% of that in the control strain (MR12). Comparative time-course analyses indicated that endoglucanase activity in ΔprtTΔpepI increased to double that in MR12. Xylanase activities increased in both ΔprtTΔpepI and ΔpepIΔIIaΔIIb to fourfold higher than that in MR12 at maximum. β-Glucosidase activities were increased in ΔprtTΔpepI and ΔpepIΔIIaΔIIb 1.3- and 1.4-fold higher than that in MR12 at maximum, respectively. Residual activities of endoglucanase, xylanase, and β-glucosidase after 7 days of incubation at 37°C in the culture supernatant were 63%, 36%, and 48% of the original in MR12. Residual endoglucanase activities were more than 80% of the original in ΔprtT, ΔprtTΔpepI, and ΔpepIΔIIaΔIIb. Residual xylanase activities were not improved in all test strains. β-Glucosidase remained almost 97% of the original in ΔprtTΔpepI. These findings indicated that the reduction of extracellular proteases effectively improved cellulolytic and xylanolytic enzyme production and stability in A. aculeatus.

Content from these authors
© 2022 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
Previous article Next article
feedback
Top