The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

RpaB, an essential response regulator for high-light stress, is extensively involved in transcriptional regulation under light-intensity upshift conditions in Synechococcus elongatus PCC7942
Akira YasudaDaichi InamiMitsumasa Hanaoka
著者情報
ジャーナル フリー 早期公開

論文ID: 2020.01.010

この記事には本公開記事があります。
詳細
抄録

In cyanobacteria, transcription of a set of genes is specifically induced by high-light-stress conditions. In previous studies, RpaB, a response regulator of the two-component system, was shown to be involved in this regulation in vitro and in vivo. In this study, we examined whether RpaB-dependent transcriptional regulation was extensively observed, not only under high-light-stress conditions but also under various light intensities. Transcription of high-light-dependent genes hliA, nblA and rpoD3 was transiently and drastically induced during a dark-to-light shift in a manner similar to high-light-stress responses. Moreover, expression of these genes was activated under various light-intensity upshift conditions. Phos-tag SDS-PAGE experiments showed that the phosphorylation level of RpaB was decreased along with transcriptional induction of target genes in all of the light environments examined herein. These results suggest that RpaB may be widely involved in transcriptional regulation under dark-to-light and light-intensity upshift conditions and that high-light-responsive genes may be required in various light conditions other than high-light condition. Furthermore, it is hypothesised that RpaB is regulated by redox-dependent signals rather than by high-light-stress-dependent signals.

著者関連情報
© 2020, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
feedback
Top