The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

In vivo localization and oligomerization of PixD and PixE for controlling phototaxis in the cyanobacterium Synechocystis sp. PCC6803
Yuki SugimotoShinji Masuda
著者情報
ジャーナル フリー 早期公開

論文ID: 2020.06.001

この記事には本公開記事があります。
詳細
抄録

Phototaxis is a phenomenon where cyanobacteria move toward a light source. Previous studies have shown that the blue-light-using-flavin (BLUF)-type photoreceptor PixD and the response regulator-like protein PixE control the phototaxis in the cyanobacterium Synechocystis sp. PCC6803. The pixD-null mutant moves away from light, whereas WT, pixE mutant, and pixD-pixE double mutant move toward the light. This indicates that PixE functions downstream of PixD and influences the direction of movement. However, it is still unclear how the light signal received by PixD is transmitted to PixE, and then subsequently transmitted to the type IV pili motor mechanism. Here, we investigated intracellular localization and oligomerization of PixD and PixE to elucidate mechanisms of phototaxis regulation. Blue-native PAGE analysis, coupled with western blotting, indicated that most PixD exist as a dimer in soluble fractions, whereas PixE localized in ~250 kDa and ~450 kDa protein complexes in membrane fractions. When blue-native PAGE was performed after illuminating the membrane fractions with blue light, PixE levels in the ~250 kDa and ~450 kDa complexes were reduced and increased, respectively. These results suggest that PixE, localized in the ~450 kDa complex, controls activity of the motor ATPase PilB1 to regulate pilus motility.

著者関連情報
© 2020, Applied Microbiology, Molecular and Cellular Biosciences Research Foundation
feedback
Top