The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260

This article has now been updated. Please use the final version.

CRISPR-Cas9 genome editing of miso and soy source yeast Zygosaccharomyces sp.
Tomoo OgataKotori KoideShiori KudouMiu SutoKotaro UeharaTeruya Kaneko
Author information
JOURNAL OPEN ACCESS Advance online publication

Article ID: 2025.04.002

Details
Abstract

Genome modification would be useful for developing breeding techniques for haploid Zygosaccharomyces rouxii and natural hybrid allodiploid Zygosaccharomyces sp. yeast strains used in miso and soy sauce production. In this study, genome editing using CRISPR-Cas9 was attempted in Zygosaccharomyces sp. strains. Based on techniques in Saccharomyces cerevisiae, the Cas9 gene and guide RNA (gRNA) were expressed from the same plasmid. Targeting of the ZygoLEU2 gene of haploid Z. rouxii strain DA2 led to of a single-nucleotide insertion in the ORF, resulting in termination of translation at 10 amino acids. This single-base insertion was 3-bp upstream of the protospacer-associated motif (PAM) sequence, suggesting that it occurred during the repair process following the Cas9-induced double-strand break. The transformant was auxotrophic for leucine, verifying that genome editing using CRISPR-Cas9 had occurred. Application of the CRISPR-Cas9 system to allodiploid Zygosaccharomyces sp. strains, which have T- and P-subgenomes, resulted in transformants with base insertions or deletions upstream of the PAM sequence, or insertions of different subgenome sequences. Leucine-auxotrophic transformants were obtained in which the ORF of the ZygoLEU2 gene in both subgenomes were mutated. In some genome-edited strains, a significant region of one subgenome chromosome was missing. Lastly, we applied CRISPR-Cas9 to the gene encoding Hog1, a protein kinase involved in adaptation to high-salt and high-osmolarity conditions. Mutation of the HOG1 genes of both the T- and P-subgenomes by CRISPR-Cas9 significantly reduced growth in high salt and high osmolarity conditions.

Content from these authors
© 2024 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
feedback
Top