The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
Functional diversification of five superoxide dismutase genes in Aspergillus nidulans against oxidative stress: distinct cellular roles of SodA and SodB
Kyoko KanamaruYumiko MaedaMakoto KimuraTetsuo Kobayashi
著者情報
ジャーナル オープンアクセス 早期公開
電子付録

論文ID: 2025.12.002

詳細
抄録

Superoxide dismutases (SODs) play crucial roles in protecting cells against oxidative stress by catalyzing the dismutation of superoxide radicals. In Aspergillus nidulans, five putative SOD genes have been predicted in the genome; however, their comparative expression profiles and physiological functions remain largely uncharacterized. In this study, we analyzed the expression levels of all five SOD genes at different growth stages and examined the oxidative stress sensitivity of corresponding gene-disrupted strains. We found that sodA exhibited high and constitutive expression across all growth stages, while sodB was predominantly expressed in conidia (asexual spores). Disruption mutants of sodA and sodB showed increased sensitivity to oxidative agents, confirming their functional importance. Subcellular fractionation and SOD activity assays revealed that SodA was localized in the cytoplasm, whereas SodB was primarily localized in mitochondria. These results highlight the growth stage-specific expression and distinct cellular roles of SodA and SodB in A. nidulans, providing novel insights into the oxidative stress defense system in filamentous fungi.

著者関連情報
© 2025 Applied Microbiology, Molecular and Cellular Biosciences Research Foundation

This article is licensed under a Creative Commons [Attribution-NonCommercial-NoDerivatives 4.0 International] license.
https://creativecommons.org/licenses/by-nc-nd/4.0/
前の記事 次の記事
feedback
Top