The Journal of General and Applied Microbiology
Online ISSN : 1349-8037
Print ISSN : 0022-1260
ISSN-L : 0022-1260
STUDIES ON (-)-CITRAMALIC ACID FORMATION BY RESPIRATION-DEFICIENT YEAST MUTANTS
V. PURIFICATION AND SOME PROPERTIES OF CITRAMALATE CONDENSING ENZYME
TOSHIYUKI SAIKÔ AIDATEIJIRO UEMURA
Author information
JOURNAL FREE ACCESS

1969 Volume 15 Issue 3 Pages 345-363

Details
Abstract

Citramalate condensing enzyme has been purified 95-fold by ammonium sulfate fractionation, and by Sepharose 4B and DEAE-cellulose column chromatography from RD petite mutant strain of Saccharomyces carlsbergensis. On the basis of the fact that (-)-citramalate fraction had all of the radioactivity while (+)-citramalate fraction contained no radioactivity when enzymically formed radioactive citramalic acid with authentic carrier DL-citramalic acid was subjected to optical resolution, it was made clear that this enzyme catalyzed the formation of (-)-citramalate from pyruvate and acetyl-CoA. The optimal pH of the enzyme was 7.4 and the Km value for pyruvate was 2.3×10-3M. The purified enzyme preparation still has an activity toward α-ketobutyrate and α-ketoisovalerate. The Km value for α-ketoisovalerate was 2.6×10-5M. L-Leucine inhibits to the same extent the respective condensation reactions between these three α-keto acids and acetyl-CoA. α-Ketoisovalerate is an effective inhibitor of citramalate condensing reaction. The enzyme was strongly inhibited by p-chloromercuribenzoate, Cu2+, Zn2+, Hg2+, Pb2+, and Cd2+. Citramalate condensing enzyme appears to be identical with α-isopropylmalate synthetase in the leucine biosynthetic pathway. The role of this enzyme in RD petite mutant strains of Saccharomyces carlsbergensis was discussed in relation to citramalate formation.

Content from these authors
© The Microbiology Research Foundation
Previous article Next article
feedback
Top