Abstract
Geotrichum sp. FO 274A was isolated as a microorganism capable of assimilating sardine oil as the sole carbon source. Three FO 274A lipases were purified by ion exchange and hydrophobic interaction chromatographies and termed Lipases A, B and C. Lipases A and C hydrolyzed most of the ester bond of the fatty acids contained in sardine oil. Lipase B preferentially hydrolyzed the ester bond of the fatty acids of C16 or C18 having the cis double bond at the 9-position. The hydrolysis rate for sardine oil under indicated conditions increased when combinations of the purified lipases were used instead of each purified lipase. A combination of Lipases A and C showed the highest hydrolysis rate for sardine oil. The lipases from Geotrichum sp. FO 274A showed the highest hydrolysis rate for sardine oil compared with the lipases similarly isolated from other Geotrichum sp.