抄録
Fire occurred in underground engineering such as tunnel will cause the change of the temperature field in the surrounding soil. The study on thermal conductivity of soils in fire environment is very important. This paper focuses on the experimental study on heat transfer characteristics of soft clay in Shanghai in high temperature environment over 100°C. The test results show that the change of internal temperature of initial saturated soils can be roughly divided into four stages, namely rapid heating stage I, constant temperature stage II, the second rapid heating stage III and the final constant temperature stage IV, when the drainage and exhaust are allowed in the high temperature environment. There is a peak value in the high temperature curve, the higher the temperature the bigger the peak value. According to comprehensive analysis of the heating curves under different temperature, high temperature has significant influence on thermal conductivity of soils and causes the increasing of thermal conductivity for wet soil and dry soil. The thermal conductivity of dry soil is relatively smaller than that of wet soil.