Journal of the Human-Environment System
Online ISSN : 1349-7723
Print ISSN : 1345-1324
Review Article
The Air Distribution Index as an Indicator for Energy Consumption and Performance of Ventilation Systems
T. KarimipanahH.B. AwbiB. Moshfegh
Author information
JOURNALS FREE ACCESS

Volume 11 (2008) Issue 2 Pages 77-84

Details
Download PDF (1825K) Contact us
Abstract

This paper deals with the energy consumption and the evaluation of the performance of air supply systems for a ventilated room involving high- and low-level supplies. The energy performance assessment is based on the airflow rate, which is related to the fan power consumption by achieving the same environmental quality performance for each case. Four different ventilation systems are considered: wall displacement ventilation, confluent jets ventilation, impinging jet ventilation and a high level mixing ventilation system. The ventilation performance of these systems will be examined by means of achieving the same Air Distribution Index (ADI) for different cases.
The widely used high-level supplies require much more fan power than those for low-level supplies for achieving the same value of ADI. In addition, the supply velocity, hence the supply dynamic pressure, for a high-level supply is much larger than for low-level supplies. This further increases the power consumption for high-level supply systems.
The paper considers these factors and attempts to provide some guidelines on the difference in the energy consumption associated with high and low level air supply systems. This will be useful information for designers and to the authors' knowledge there is a lack of information available in the literature on this area of room air distribution.
The energy performance of the above-mentioned ventilation systems has been evaluated on the basis of the fan power consumed which is related to the airflow rate required to provide equivalent indoor environment. The Air Distribution Index (ADI) is used to evaluate the indoor environment produced in the room by the ventilation strategy being used. The results reveal that mixing ventilation requires the highest fan power and the confluent jets ventilation needs the lowest fan power in order to achieve nearly the same value of ADI.

Information related to the author
© 2008 by Japanese Society of Human-Environment System
Next article

Recently visited articles
feedback
Top