Journal of High Temperature Society
Print ISSN : 0387-1096
Research Paper
Effect of Nitrogen Shielding Gas on Laser Weldability of Austenitic Stainless Steel
Seiji KATAYAMADaisuke YOSHIDAAkira MATSUNAWA
Author information
JOURNAL FREE ACCESS

2004 Volume 30 Issue 2 Pages 93-99

Details
Abstract

YAG and CO2 laser weldability of Type 304 steel in nitrogen (N2) shielding gas was evaluated by investigating melting characteristics, porosity formation tendency, N content, microstructural characteristics and cracking sensitivity. Melting characteristics of weld beads produced below 4 kW were not so much different between YAG and CO2 laser. Porosity was remarkably reduced in any welds produced with nitrogen gas in comparison with normal welds made with Ar or He gas. This was attributed to the decrease in N content in a keyhole due to the reaction with evaporated Cr vapor as well as the absorption in the keyhole molten surface. The N contents absorbed in Type 304 weld fusion zones were larger under any welding conditions with CO2 laser than with YAG laser. On the other hand, in the case of several CO2 laser weld metals, solidification cracks occurred along the grain boundaries of a fully austenitic phase. Primary solidification of delta-ferrite phase normally took place in Type 304 weld metals, but a primary austenite phase was formed owing to the N enrichment, and micro-segregation of P and S increased along the grain boundaries. Consequently, cracking was induced by enhancement of cracking sensitivity due to a wider BTR. It was concluded that a great effect of nitrogen on the weldability of stainless steel was noted more remarkably in CO2 laser weld fusion zones than in YAG laser ones. It must be attributed to the N plasma formation leading to higher temperatures and consequent generation of more active N during CO2 laser welding.

Content from these authors
© 2004 by High Temperature Society of Japan
Previous article Next article
feedback
Top