石炭科学会議発表論文集
Online ISSN : 2423-8309
Print ISSN : 2423-8295
ISSN-L : 2423-8295
第59回石炭科学会議
会議情報

ガス化・燃焼、熱分解・コークス
1-01 ニューラルネットワークを用いた水性ガスシフト反応の反応速度の推定における温度と希釈ガス濃度の影響
山口 航平沼澤 結松川 嘉也青木 秀之
著者情報
会議録・要旨集 フリー

p. 2-3

詳細
抄録

The reaction rates of water gas shift reaction based on detailed chemistry from 1373 K to 1573 K were analyzed. The obtained data sets were used to train a neural network. For validation, temporal changes of mole fraction were simulated using the trained neural network, and the results were compared with those using detailed chemistry. Since the results of neural network were in good agreement with these of detailed chemistry, the neural network with information of nitrogen and temperature in the input layer was able to predict reaction rates with high accuracy.

著者関連情報
© 2022 一般社団法人 日本エネルギー学会
前の記事 次の記事
feedback
Top