Journal of Japan Institute of Light Metals
Online ISSN : 1880-8018
Print ISSN : 0451-5994
ISSN-L : 0451-5994
RESEARCH ARTICLE
Effect of anodizing time on multiscale porous structure of Ti–Al alloy microchannel wall
Tatsuya Ohmi Tatsuki YamamoriMasatoshi Sakairi
Author information
JOURNAL FREE ACCESS

2017 Volume 67 Issue 11 Pages 589-594

Details
Abstract

Effect of anodizing time on the multiscale porous structure of the inner wall of the microchannel produced in a titanium alloy body has been investigated. The microchannel was produced by a powder-metallurgical process in which a titanium-powder compact containing thin aluminum wire was sintered at a temperature above the melting point of aluminum. During sintering, microscopic infiltration of molten aluminum into the porosity of the compacted titanium powder and subsequent diffusion of aluminum into the titanium powder particles brought about the formation of a microchannel lined with Ti–Al alloy layer in the sintered body. The inner walls of the microchannels with uniform composition, Ti–18.0(±1.8)mol%Al, were provided for anodizing experiments. When the anodizing time was in the range from 1.8 to 28.8 ks, the structure of the anodic oxide film was nanotube array. Each specimen had a microchannel of several hundred micrometers in diameter, inner wall asperity of several ten micrometers in size, and nanotube array structure of the anodic oxide film. In the specimen anodized for 59.6 ks, on the other hand, the nanotube array had changed to a different structure resembling that of nanoporous metals produced by dealloying.

Content from these authors
© 2017 The Japan Institute of Light Metals
Previous article Next article
feedback
Top