Journal of Japan Institute of Light Metals
Online ISSN : 1880-8018
Print ISSN : 0451-5994
ISSN-L : 0451-5994
RESEARCH ARTICLE
Differential scanning calorimetry analysis of solidification and precipitation behavior in Al-Si alloys
Yuki Iwasaki
Author information
JOURNAL FREE ACCESS

2024 Volume 74 Issue 4 Pages 173-179

Details
Abstract

Solidification and precipitation behavior for Al-Si alloys were investigated by differential scanning calorimetry (DSC). Solidus values measured by DSC method agreed with calculated solidus values from equilibrium phase diagram. Liquidus values measured by DSC was deviated from calculated values by phase diagram. Comparison of solid fraction calculated from specific heat curves and calculated values from phase diagram were showed partially deviation. Since Al-Si alloys used in this study were contained about 0.1% Fe, solidification behavior was considered to be slightly different from Al-Si binary phase diagram. From the measured heat flux curves for solution treated Al-Si- alloys, exothermic reaction due to precipitation of solute Si and endothermic reaction due to dissolution of Si precipitates were detected. With heating of specimens, solute Si were considered to be precipitated from the supersaturated solid solution first, and then precipitated Si during cooling after solution treatment and during measurement were dissolved. For Al-1.4mass%Si alloy, the amount of precipitated Si during measurement analyzed from DSC curves was estimated to be about 84% of solute Si, corresponding to 1.26vol.% in volume fraction. In this study, it was indicated that solidification and precipitation behavior can be quantitatively analyzed by DSC measurement for systems with known phase diagram.

Content from these authors
© 2024 by The Japan Institute of Light Metals
Previous article Next article
feedback
Top