Journal of the Japan Institute of Metals and Materials
Online ISSN : 1880-6880
Print ISSN : 0021-4876
ISSN-L : 0021-4876
Detecting the Transition of Creep Rate-Controlling Process in Al-Mg Solid-Solution Alloy through Instrumented Indentation
Hidenari TakagiMing DaoMasami FujiwaraMasahisa Otsuka
Author information
JOURNAL FREE ACCESS

2005 Volume 69 Issue 4 Pages 348-355

Details
Abstract

  Indentation creep tests of an Al-5.3 mol% Mg solid-solution alloy were performed using a microindenter in order to examine whether creep properties can be extracted accurately from a testpiece which is as small as a rice grain. A conical indenter was pressed into a surface with a load of 0.39 N at temperatures ranging from 546 to 590 K. When the average equivalent stress σm in the region beneath the indenter decreases to a critical stress σc during the creep indentation, the creep stress exponent n changes from 4.9 to 3.0. The measured σc-value decreases from 122 to 52 MPa with increasing temperature, while the corresponding indentation strain rate εc increases from 1.22×10-3 to 2.00×10-3 s-1. The temperature dependence of σc and εc is almost in agreement with the results derived from dislocation theory. The activation energy Q for creep in the stress range H (σmc) is approximately equivalent to that for the lattice diffusion of pure aluminum, 144 kJ mol-1. The Q-value in the stress range M (σmc) is close to the activation energy for the mutual diffusion of this alloy, 130 kJ mol-1. With load-jump tests at T=573 K, indentation load was abruptly changed from 0.39 N to various values ranging 0.19-0.59 N. In the stress range H, instantaneous plastic deformation (IPD) takes place evidently even when the load increment ΔF is very small. In the stress range M, the IPD does not occur when ΔF is within a certain value. However, the occurrence of IPD is observed when σm coincided with σc. The findings suggest that the creep rate-controlling process changes from recovery control (n=4.9) to glide control (n=3.0) below σc. These results agree well with those of conventional uniaxial creep tests. Consequently, the indentation testing technique can be used effectively to extract creep parameters from small-volume samples.

Content from these authors
© 2005 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top