Journal of the Japan Institute of Metals and Materials
Online ISSN : 1880-6880
Print ISSN : 0021-4876
ISSN-L : 0021-4876
Regular Article
Formation of a Ni-Al Intermetallic compound Layer by AIH-FPP Treatment
Shuya SaitoKouya SuzukiJun KomotoriKengo FukazawaYoshitaka MisakaKazuhiro Kawasaki
Author information
JOURNAL FREE ACCESS

2016 Volume 80 Issue 9 Pages 562-569

Details
Abstract

 In order to form a Ni-Al intermetallic compound layer on a carbon steel surface, Atmospheric-controlled Induction Heating Fine Particle Peening (AIH-FPP) was carried out at 900℃ in argon atmosphere with nickel and aluminum particles mechanically milled by planetary ball mills. The treated surface was analyzed using a scanning electron microscope (SEM), an energy dispersive X-ray spectrometer (EDX), and an X-ray diffraction (XRD). Oxidation tests were carried out at 900℃ for 100 hours. Results showed that the Ni-Al intermetallic compound layer with a thickness of 200 μm was formed in the case of the specimen treated by the aluminum rich shot particles; the ratio of Ni to Al was 1 to 4 (mol). This was because (i) melted aluminum particles decreased the melting point of nickel particles and the steel substrate, and (ii) partially melted area promoted a combustion synthesis reaction between nickel and aluminum, resulting in forming the Ni-Al intermetallic compound layer. The AIH-FPP treated surface showed a higher oxidation resistance than that of the un-treated specimen. This was because Al2O3 continually created from the Ni-Al intermetallic compound layer protected the steel substrate.

Content from these authors
© 2016 The Japan Institute of Metals and Materials
Previous article Next article
feedback
Top