日本結晶成長学会誌
Online ISSN : 2187-8366
Print ISSN : 0385-6275
ISSN-L : 0385-6275
解説
極低電子線観察を可能にする深層学習によるTEM画像の鮮明化
勝野 弘康木村 勇気山﨑 智也瀧川 一学
著者情報
ジャーナル フリー

2022 年 49 巻 1 号 論文ID: 49-1-07

詳細
抄録

  We apply a convolutional neural network (CNN) to low-dose electron images obtained by a transmission electron microscope. Using our original dataset including short-exposure images and long-exposure images, the CNN model is trained. The CNN model produced images that were equivalent to images 10000 times brighter. The particles in improved images become clearer and can be counted. The waiting time for image conversion is approximately 8 ms, and the in-situ observation is also possible.

著者関連情報
© 2022 日本結晶成長学会
前の記事 次の記事
feedback
Top