Abstract
Large amounts of fat and complex anatomy make the head and neck region one of the more challenging areas for MR imagings. The high signal intensity of fat on T1 weighted images (T1W1) has limited the utility of Gd-DTPA in imaging of head and neck lesions. The contrast enhanced lesions may have T1W1 signal intensity similar to fat, which results in diagnostic difficulty. A fat suppression technique used in conjunction with Gd-DTPA ensures that enhancing lesions will not be obscured by high signal from the surrounding fat or by chemical shift artifact.
We evaluated the role or chemical shift imagings for fat suppression in the depiction of 15 patients with head and neck cancers. Gd-DTPA-enhanced fat suppression T1W1 were compared with conventional pre and postcontrast T1-and T2W1 using a four-point grading system (Grade 0-3) in detecting and defining the extent of primary lesions and lymphnodes.
Gd-DTPA-enhanced fat suppression T1W1 (average score 2.93) which had a score of 3 in 14 patients, were superior to conventional T1W1 (0.73), postcontrast T1W1 (1.80) and T2W1 (1.67). Gd-DTPA enhanced fat suppression T1W1 were particularly beneficial in the detection of central necrosis or extracapsular invasion of neck lymphnodes as well as in defining the extent of tumor invasion to fat-containing areas such as bone marrow or cheek.
Our data suggested that fat suppresion techique was extremely useful to delineate the primary tumors and regional lymphnodes without increasing scan time or image postprocessing.