The Japanese Journal of Physiology
Print ISSN : 0021-521X
Regular Papers
Inhomogeneous Vasodilatory Responses of Rat Tail Arteries to Heat Stress: Evaluation by Synchrotron Radiation Microangiography
Eriko KuwabaraFujiya FuruyamaKunihisa ItoEtsuro TanakaNaoichiro HattanHisanori FujikuraKoji KimuraTakako GotoTakashi HayashiHiroyuki TairaYoshiro ShinozakiKeiji UmetaniKazuyuki HyodoKenkichi TaniokaRyo MochizukiToshiaki Kawai
Author information
JOURNAL FREE ACCESS

2002 Volume 52 Issue 5 Pages 403-408

Details
Abstract
Tail blood flow is crucial for dissipating body heat in rats. Angiographies are convenient tools to evaluate tail circulation. However, conventional angiographies do not have sufficient sensitivity or spatial resolution for small vessels. Recently, we developed a novel microangiographic system using monochromatic synchrotron radiation and a high-definition video camera system. Here, we report an evaluation of rat tail circulation under heat stress using the synchrotron radiation microangiographic system. We performed an experiment using the microangiography of the caudal artery before and after heating up WKAH/HkmSlc rats to rectal temperature of 39°C. The images were digitized and temporal subtraction was performed, and the diameters of caudal arteries were evaluated. After heating, the medial caudal artery was markedly dilated (320 ± 53 to 853 ± 243 μm in diameter, plt;0.001), while no significant change was observed in the lateral caudal arteries (139 ± 42 to 167 ± 73 μm) and segmental anastomosing vessels. The heat stress allowed for visualization of the superficial caudal arteries with a diameter of approximately 60 μm, not visible prior to heating. Thus, synchrotron radiation microangiography demonstrated that the rat tail possessed dual sets of arteries; one set was highly sensitive to heat-induced vasodilation (medial caudal artery and superficial caudal arteries) and the other set was less sensitive (lateral caudal arteries and segmental anastomosing vessels).
Content from these authors
© 2002 by The Physiological Society of Japan
Next article
feedback
Top