粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
研究
Sintering and Mechanical Properties of Fly-ash/NiCr Compacts Prepared by Spark Plasma Sintering
Mamoru DaioKazuhiro HasezakiMariko HosogiIchiro Yoshioka
著者情報
ジャーナル オープンアクセス

2010 年 57 巻 10 号 p. 654-659

詳細
抄録
Fly-ash/NiCr-alloy functionally graded materials (FGMs) plates were prepared by spark plasma sintering (SPS); the plates were 100 mm in diameter and layer thicknesses of 0.6 mm and 1 mm. The plates consisted of stacked layers; the layers had volume ratio compositions of fly-ash/NiCr = (100/0 (A), 60/40 (B), 40/60 (C), 60/40 (B), 100/0 (A)). Two sorts of FGMs specimens with three layers prepared by machined from the FGMs plates with A/B/C/B/A five layers were investigated using a three-point flexural test. One sort of specimens had the normal stacking structure A/B/C, and the other had the reverse structure C/B/A, for the loading nose. After investigating the strengths of these two stacking structures, the fracture origins were observed at the surface of the extending C layer of the A/B/C structures, and of the A layer surface of the C/B/A structures. The deformation mechanism, average strength, and Weibull modulus were ductile, 12.0 MPa, and 5.5, respectively, for the normal A/B/C structure, and brittle, 46.7 MPa, and 13.1, respectively, for the C/B/A reverse structure. The different strengths of the two structures were explained on the basis of the strength of the extending surface layer, A or C, and the residual stress caused by the difference in thermal expansion coefficients of the stacking layers in the two structures. It was concluded that the fracture strengths of stacked FGMs materials were dominated by the stress field between the constituent layers and by the loading direction.
著者関連情報
© 2010 by Japan Society of Powder and Powder Metallurgy

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top