粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
Physics & Chemistry
The Verwey Phase of Magnetite: A Long-Running Mystery in Ferrites
J. P. Attfield
著者情報
ジャーナル オープンアクセス

2014 年 61 巻 S1 号 p. S43-S48

詳細
抄録
Magnetite (Fe3O4) is the original magnetic material and the parent of ferrite magnets, with modern applications ranging from spintronics to MRI contrast agents. At ambient temperatures magnetite has a cubic spinel-type crystal structure, but it undergoes a complex structural distortion and becomes electrically insulating below the 125 K Verwey transition. The electronic ground state of the Verwey phase has been unclear for over 70 years as the low temperature structure was unknown, but the full low temperature superstructure was recently determined by high energy microcrystal x-ray diffraction. There are 168 frozen phonon modes in the acentric (and hence multiferroic) low temperature magnetite structure. The ground state was found to be Fe2+/Fe3+ charge ordered and Fe2+ orbital ordered to a first approximation, but an unexpected localization of electrons in three-Fe ‘trimeron’ units was discovered. This description is supported by band structure calculations. This brief review will summarise recent progress on understanding the ground state structure of the Verwey phase of magnetite.
著者関連情報
© 2014 by Japan Society of Powder and Powder Metallurgy

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top