Journal of the Japan Society of Powder and Powder Metallurgy
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
Paper
Development of All-ceramic Artificial Teeth Using a High-speed Centrifugal Compaction Process with a 3D Printer
Hiroyuki Y. SUZUKIYuuki MIYANO
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML

2016 Volume 63 Issue 7 Pages 524-529

Details
Abstract

All-ceramic artificial teeth were produced using a high-speed centrifugal compaction process (HCP) combined with a resin shell-mold made by a 3D printer. Slurries of alumina or zirconia fine powders filled the inside and outside of the mold and then rotated at between 7,000 and 11,500 rpm in a centrifuge (HCP buried compaction method). Using this method, crack-free green compacts were produced. The shell-molds were not deformed or broken because the inner and outer pressures generated during the HCP were quasi-balanced. Two methods for mold-releasing, thermal decomposition and mechanical de-molding by hand, were investigated. Thermal decomposition introduced the critical problem of sintering inhibition. To obtain the final products, the compacts were air sintered after being released from the molds. For alumina, green compacts of high packing density (63 %) were sintered homogenously without considerable deformation. For zirconia, the packing density reached approximately 55 % with a density gradient. The zirconia compacts were sintered inhomogeneously, which resulted in a density gradient and deformation. The density gradient and shape deformation of the sintered compacts are discussed.

Content from these authors
© 2016 by Japan Society of Powder and Powder Metallurgy

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
Previous article Next article
feedback
Top