粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
解説
ハイエントロピー合金の結晶粒超微細化
吉田 周平池内 琢人BHATTACHARJEE TilakBAI Yu柴田 曉伸辻 伸泰
著者情報
ジャーナル オープンアクセス

2020 年 67 巻 3 号 p. 113-120

詳細
抄録

High entropy alloys (HEAs) and medium entropy alloys (MEAs) are new classes of materials, defined as alloys composed of five or more and four or fewer kinds, respectively, of alloying elements with (near-)equiatomic concentrations. In the present article, we reviewed our recent works on ultra-grain refinement of HEAs and MEAs. CoCrFeMnNi HEA and its sub-system MEAs were highly deformed by high-pressure torsion and subsequently annealed under various conditions to obtain fully-recrystallized microstructures with FCC single phase having different mean grain sizes. It was found that ultrafine-grained (UFG) microstructures could be easily obtained by simple thermomechanical processes. Grain size and chemical composition dependence on mechanical properties of the HEA and MEAs were evaluated by tensile tests at room temperature. UFG HEAs and MEAs exhibited characteristic phenomena, such as discontinuous yielding and extra-hardening, similar to other UFG metals. In addition, the UFG HEAs and MEAs showed better strength-ductility balance compared with conventional UFG metals. Friction stresses of HEAs and MEAs were determined from Hall-Petch relationships and found to be much higher than those of pure metals and dilute alloys having FCC structure. Analysis based on theoretical models suggested that the high friction stress reflected atomic-scale heterogeneity in HEAs and MEAs.

著者関連情報
© 2020 一般社団法人粉体粉末冶金協会

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
次の記事
feedback
Top