粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
研究論文
シンクロトロン光X線CTによるガスアトマイズ粉末に含まれる気孔量評価およびガス種の影響調査
吉年 規治遠藤 嵩英正橋 直哉
著者情報
ジャーナル オープンアクセス

2021 年 68 巻 5 号 p. 167-174

詳細
抄録

The presence of pores in gas-atomized alloy powders induces a significant deterioration in the properties of the final product. However, there is no established technique to quantitatively analyze the porosity of gas-atomized powders. In this study, the pores in gas-atomized amorphous Fe76Si9B10P5 powder particles prepared under different atomization conditions were analyzed in detail using synchrotron radiation X-ray computed tomography. This technique allowed the detection of small pores with diameters below 10 µm. It also enabled the quantification of the porosity; thus, the pore diameter and volume ratio under different atomization conditions were determined. The volume ratio of the pores with the use of low-pressure Ar as the atomization gas was lower than that with the use of high-pressure Ar. The use of a low-pressure gas during spraying induced an increase in the diameter of the powder particles, thereby resulting in the presence of numerous irregular-shaped particles. The results of X-ray diffraction confirmed the partial precipitation of a crystalline phase with a decrease in the cooling rate. The use of 3 or 7% Ar–H2 mixtures as the atomization gas induced a decrease in the number and volume of pores, without affecting the particle size and cooling rate. The presence of H2 as a reducing gas suppressed the surface oxidation of the droplet during the atomization of the molten-metal stream, which allowed trapped gas bubbles to be efficiently removed before solidification.

著者関連情報
© 2021 一般社団法人粉体粉末冶金協会

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top