粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
研究論文
金属組織画像の疑似生成および判別問題への優位性検証-敵対的生成ネットワークの適用-
栗林 大樹佐藤 知広齋藤 賢一宅間 正則高橋 可昌
著者情報
ジャーナル オープンアクセス

2021 年 68 巻 8 号 p. 317-323

詳細
抄録

In recent years, materials infomatics (MI), a technology that combines materials engineering and machine learning, has become popular and is used for discovering new materials. In this research, we aimed to verify whether MI can be applied to the problem of “development and maintenance of technology,” which is becoming more difficult due to the decrease in the number of engineers caused by the declining birthrate and aging population in Japan. We selected “discrimination of optical electron microscope images” as the verification target, and used Convolutional Neural Networks (CNNs) as the machine learning technology to discriminate between seven types of sintered metal objects under different sintering conditions, hoping for general applicability to the discrimination problem, and confirmed a discrimination accuracy of 98.5%. In addition, we verified the effectiveness of using pseudo-samples for the discrimination problem using Generative Adversarial Networks (GANs) in the hope of improving accuracy by increasing the number of samples, and confirmed the improvement of accuracy by adding pseudo-samples to the training data.

著者関連情報
© 2021 一般社団法人粉体粉末冶金協会

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
前の記事 次の記事
feedback
Top