粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799
解説
多体問題に対する微分形式による数値厳密解
近藤 慎一郎吉村 一良
著者情報
ジャーナル オープンアクセス

2023 年 70 巻 6 号 p. 281-289

詳細
抄録

The Many-body problem is very important issue in physics. Usually perturbation calculations based on the Green's function have been used to analyze such a problem, however, infinite orders of perturbation calculations are required to obtain exact solutions, thus resulting in the analytical and numerical difficulties. To overhaul such difficulties, we propose the new calculation method based on the differential forms, which are able to evaluate exact solutions if Hamiltonian is composed of Fermi particles. Since our proposed method is based on time evolution equations, comparisons with the calculations derived from Feynman Kernel is possible, with showing complete agreement. Furthermore we applied this method to the simplest Anderson Hamiltonian to investigate the appearance of magnetic moment. The calculation results show that magnetic moment easily disappears with small Coulomb repulsive energy, possibly implying the spin fluctuations.

著者関連情報
© 2023 一般社団法人粉体粉末冶金協会

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
次の記事
feedback
Top