粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

ニューラルネットワークを用いた電場中でのイオン挙動計算手法の開発:アモルファスリン酸リチウム中でのイオン伝導への応用
清水 康司大塚 竜慈渡邉 聡
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 23-00043

この記事には本公開記事があります。
詳細
抄録

We developed a neural network-based model to predict the Born effective charges from atomic structures. By combining forces due to an applied electric field, expressed as a product of the Born effective charge and the electric field, and forces evaluated by a neural network potential (NNP), a simulation scheme of ion dynamics under an electric field was proposed. Taking Li3PO4 as a prototype, we demonstrated the validity of our computation scheme. Using the constructed model of the Born effective charge predictor and NNP based on density functional (perturbation) theory calculation data, molecular dynamics (MD) simulations under a uniform electric field of 0.1 V/Å were performed. We obtained an enhanced mean square displacement of Li along the electric field, which seems physically reasonable. In addition, we found that the external forces along the direction perpendicular to the electric field, which originated from the off-diagonal components of the Born effective charges, had a non-negligible effect on the Li motion. Furthermore, we observed a more susceptive response of Li to the electric field in an amorphous structure.

著者関連情報
© 2023 一般社団法人粉体粉末冶金協会

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
feedback
Top