粉体および粉末冶金
Online ISSN : 1880-9014
Print ISSN : 0532-8799
ISSN-L : 0532-8799

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

機械学習を援用したTi-Fe二相合金における強化因子の特定
平子 綾音刈屋 翔太梅田 純子山中 謙太Xiaochun LI近藤 勝義
著者情報
ジャーナル オープンアクセス 早期公開

論文ID: 24-00057

この記事には本公開記事があります。
詳細
抄録

Due to the complex and nonlinear correlations between microstructures and mechanical properties in dual phase alloys, it is difficult to estimate their strength by conventional methods. This study attempts to model the relationship between microstructure and mechanical properties in sintered and hot-rolled α + β titanium-iron (Ti-Fe) alloys using machine learning. In the preparation of the models, 4-9 microstructural factors were investigated to identify the most important predictors of mechanical properties. A Random Forest (RF) model was found to have best predictive power, producing a good match with experimental data in samples which were outside of the training dataset. Moreover, the average α grain diameters, β phase widths (by intercept method), and β phase area fractions were found to be the strongest predictors of mechanical behavior.

著者関連情報
© 2025 一般社団法人粉体粉末冶金協会

本論文はCC BY-NC-NDライセンスによって許諾されています.ライセンスの内容を知りたい方は,https://creativecommons.org/licenses/by-nc-nd/4.0/deed.jaでご確認ください.
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
feedback
Top