Abstract
We have investigated the minimum discharged power to maintain lamp plasma in terms of dependence on buffer gas condition and driving frequency of the electrodeless compact fluorescent lamp (ECFL). It is essential for realization of the low-frequency driven ECFL with inductively coupled plasma technique for household use. Considering the point of cost, the driving frequency of the electrodeless discharge lamp should be lowered because high frequency driving (> 1MHz) requires special components for reduction of EMI noise and circuit power loss with the increase in driving frequency. But it is difficult to maintain plasma at low frequency driving, since induced electric fields, which excited with the induction coil is declined and not receive energy for ionization and discharge sufficiently. Here, we indicated that the condition of minimum power to maintain the H-mode (inductively coupled) discharge described as simple functions of buffer gas pressure and driving frequency for a fixed lamp bulb shape and found that the relation can represent the measured data well. Using that relation, we can easily predict optimum buffer gas pressure from driving frequency and required minimum maintenance power on the commercially available (practical) standpoint.