Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Martin boundary points of a John domain and unions of convex sets
Hiroaki AikawaKentaro HirataTorbjörn Lundh
著者情報
ジャーナル フリー

2006 年 58 巻 1 号 p. 247-274

詳細
抄録
We show that a John domain has finitely many minimal Martin boundary points at each Euclidean boundary point. The number of minimal Martin boundary points is estimated in terms of the John constant. In particular, if the John constant is bigger than $\sqrt3$/2, then there are at most two minimal Martin boundary points at each Euclidean boundary point. For a class of John domains represented as the union of convex sets we give a sufficient condition for the Martin boundary and the Euclidean boundary to coincide.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2006 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top