Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Weak Harnack inequality for fully nonlinear uniformly elliptic PDE with unbounded ingredients
Shigeaki KOIKEAndrzej ŚWIĘCH
著者情報
ジャーナル フリー

2009 年 61 巻 3 号 p. 723-755

詳細
抄録
The weak Harnack inequality for Lp-viscosity solutions is shown for fully nonlinear, second order uniformly elliptic partial differential equations with unbounded coefficients and inhomogeneous terms. This result extends those of Trudinger for strong solutions [21] and Fok for Lp-viscosity solutions [13]. The proof is a modification of that of Caffarelli [5], [6]. We apply the weak Harnack inequality to obtain the strong maximum principle, boundary weak Harnack inequality, global Cα estimates for solutions of fully nonlinear equations, strong solvability of extremal equations with unbounded coefficients, and Aleksandrov-Bakelman-Pucci maximum principle in unbounded domains.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2009 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top