Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Properties of superharmonic functions satisfying nonlinear inequalities in nonsmooth domains
Kentaro Hirata
著者情報
ジャーナル フリー

2010 年 62 巻 4 号 p. 1043-1068

詳細
抄録
In a uniform domain Ω, we present a certain reverse mean value inequality and a Harnack type inequality for positive superharmonic functions satisfying a nonlinear inequality -Δu(x) ≤ cδΩ(x)u(x)p for x ∈ Ω, where c > 0, α ≥ 0 and p > 1 and δΩ(x) is the distance from a point x to the boundary of Ω. These are established by refining a boundary growth estimate obtained in our previous paper (2008). Also, we apply them to show the existence of nontangential limits of quotients of such functions and to give an extension of a certain minimum principle studied by Dahlberg (1976).
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2010 The Mathematical Society of Japan
次の記事
feedback
Top