Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Yoshida lifts and Selmer groups
Siegfried BöchererNeil DummiganRainer Schulze-Pillot
著者情報
ジャーナル フリー

2012 年 64 巻 4 号 p. 1353-1405

詳細
抄録
Let f and g, of weights k′ > k ≥ 2, be normalised newforms for Γ0(N), for square-free N > 1, such that, for each Atkin-Lehner involution, the eigenvalues of f and g are equal. Let λ | ℓ be a large prime divisor of the algebraic part of the near-central critical value L(fg, (k + k′ − 2)/2). Under certain hypotheses, we prove that λ is the modulus of a congruence between the Hecke eigenvalues of a genus-two Yoshida lift of (Jacquet-Langlands correspondents of) f and g (vector-valued in general), and a non-endoscopic genus-two cusp form. In pursuit of this we also give a precise pullback formula for a genus-four Eisenstein series, and a general formula for the Petersson norm of a Yoshida lift.
Given such a congruence, using the 4-dimensional λ-adic Galois representation attached to a genus-two cusp form, we produce, in an appropriate Selmer group, an element of order λ, as required by the Bloch-Kato conjecture on values of L-functions.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2012 The Mathematical Society of Japan
前の記事
feedback
Top