Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Resolvent estimates on symmetric spaces of noncompact type
Koichi Kaizuka
著者情報
ジャーナル フリー

2014 年 66 巻 3 号 p. 895-926

詳細
抄録
In this article we prove resolvent estimates for the Laplace-Beltrami operator or more general elliptic Fourier multipliers on symmetric spaces of noncompact type. Then the Kato theory implies time-global smoothing estimates for corresponding dispersive equations, especially the Schrödinger evolution equation. For low-frequency estimates, a pseudo-dimension appears as an upper bound of the order of elliptic Fourier multipliers. A key of the proof is to show a weighted L2-continuity of the modified Radon transform and fractional integral operators.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2014 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top