Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
On the geometry of sets satisfying the sequence selection property
Satoshi KoikeLaurentiu Paunescu
著者情報
ジャーナル フリー

2015 年 67 巻 2 号 p. 721-751

詳細
抄録
In this paper we study fundamental directional properties of sets under the assumption of condition (SSP) (introduced in [3]). We show several transversality theorems in the singular case and an (SSP)-structure preserving theorem. As a geometric illustration, our transversality results are used to prove several facts concerning complex analytic varieties in 3.3. Also, using our results on sets with condition (SSP), we give a classification of spirals in the appendix 5.
The (SSP)-property is most suitable for understanding transversality in the Lipschitz category. This property is shared by a large class of sets, in particular by subanalytic sets or by definable sets in an o-minimal structure.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top