Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Hypoelliptic Laplacian and probability
Jean-Michel Bismut
著者情報
ジャーナル フリー

2015 年 67 巻 4 号 p. 1317-1357

詳細
抄録
The purpose of this paper is to describe the probabilistic aspects underlying the theory of the hypoelliptic Laplacian, as a deformation of the standard elliptic Laplacian. The corresponding diffusion on the total space of the tangent bundle of a Riemannian manifold is a geometric Langevin process, that interpolates between the geometric Brownian motion and the geodesic flow. Connections with the central limit theorem for the occupation measure by the geometric Brownian motion are emphasized. Spectral aspects of the hypoelliptic deformation are also provided on tori. The relevant hypoelliptic deformation of the Laplacian in the case of Riemann surfaces of constant negative curvature is briefly described, in connection with Selberg's trace formula.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2015 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top