Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
An affirmative answer to a conjecture on the Metoki class
Kentaro Mikami
著者情報
ジャーナル フリー

2016 年 68 巻 1 号 p. 151-167

詳細
抄録
In [6], Kotschick and Morita showed that the Gel'fand–Kalinin–Fuks class in H7GF ($\mathfrak{ham}$2, $\mathfrak{sp}$(2,ℝ))8 is decomposed as a product η ∧ ω of some leaf cohomology class η and a transverse symplectic class ω. We show that the same formula holds for the Metoki class, which is a non-trivial element in H9GF ($\mathfrak{ham}$2, $\mathfrak{sp}$(2,ℝ))14. The result was conjectured in [6], where they studied characteristic classes of transversely symplectic foliations due to Kontsevich. Our proof depends on Gröbner Basis theory using computer calculations.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top