Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Kiselman's principle, the Dirichlet problem for the Monge–Ampère equation, and rooftop obstacle problems
Tamás DarvasYanir A. Rubinstein
著者情報
ジャーナル フリー

2016 年 68 巻 2 号 p. 773-796

詳細
抄録
First, we obtain a new formula for Bremermann type upper envelopes, that arise frequently in convex analysis and pluripotential theory, in terms of the Legendre transform of the convex- or plurisubharmonic-envelope of the boundary data. This yields a new relation between solutions of the Dirichlet problem for the homogeneous real and complex Monge–Ampère equations and Kiselman's minimum principle. More generally, it establishes partial regularity for a Bremermann envelope whether or not it solves the Monge–Ampère equation. Second, we prove the second order regularity of the solution of the free-boundary problem for the Laplace equation with a rooftop obstacle, based on a new a priori estimate on the size of balls that lie above the non-contact set. As an application, we prove that convex- and plurisubharmonic-envelopes of rooftop obstacles have bounded second derivatives.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top