Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Classification of conformal minimal immersions of constant curvature from S2 to Q3
Mingyan LiXiaoxiang JiaoLing He
著者情報
ジャーナル フリー

2016 年 68 巻 2 号 p. 863-883

詳細
抄録
In this paper, we study geometry of conformal minimal two-spheres immersed in complex hyperquadric Q3. We firstly use Bahy-El-Dien and Wood's results to obtain some characterizations of the harmonic sequences generated by conformal minimal immersions from S2 to G(2,5;ℝ). Then we give a classification theorem of linearly full totally unramified conformal minimal immersions of constant curvature from S2 to G(2,5;ℝ), or equivalently, a complex hyperquadric Q3.
著者関連情報

この記事は最新の被引用情報を取得できません。

© 2016 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top