Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Multilinear Fourier multipliers with minimal Sobolev regularity, II
Loukas GrafakosAkihiko MiyachiHanh van NguyenNaohito Tomita
著者情報
ジャーナル フリー

2017 年 69 巻 2 号 p. 529-562

詳細
抄録

We provide characterizations for boundedness of multilinear Fourier multiplier operators on Hardy or Lebesgue spaces with symbols locally in Sobolev spaces. Let Hq(ℝn) denote the Hardy space when 0 < q ≤ 1 and the Lebesgue space Lq(ℝn) when 1 < q ≤ ∞. We find optimal conditions on m-linear Fourier multiplier operators to be bounded from Hp1 × … × Hpm to Lp when 1/p = 1/p1 + … + 1/pm in terms of local L2-Sobolev space estimates for the symbol of the operator. Our conditions provide multilinear analogues of the linear results of Calderón and Torchinsky [1] and of the bilinear results of Miyachi and Tomita [17]. The extension to general m is significantly more complicated both technically and combinatorially; the optimal Sobolev space smoothness required of the symbol depends on the Hardy–Lebesgue exponents and is constant on various convex simplices formed by configurations of m2m−1 + 1 points in [0,∞)m.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top