Journal of the Mathematical Society of Japan
Online ISSN : 1881-1167
Print ISSN : 0025-5645
ISSN-L : 0025-5645
Dimension formulas of paramodular forms of squarefree level and comparison with inner twist
Tomoyoshi IbukiyamaHidetaka Kitayama
著者情報
ジャーナル フリー

2017 年 69 巻 2 号 p. 597-671

詳細
抄録

In this paper, we give an explicit dimension formula for the spaces of Siegel paramodular cusp forms of degree two of squarefree level. As an application, we propose a conjecture on symplectic group version of Eichler–Jacquet–Langlands type correspondence. It is a generalization of the previous conjecture of the first named author for prime levels published in 1985, where inner twists corresponding to binary quaternion hermitian forms over definite quaternion algebras were treated. Our present study contains also the case of indefinite quaternion algebras. Additionally, we give numerical examples of L functions which support the conjecture. These comparisons of dimensions and examples give also evidence for conjecture on a certain precise lifting theory. This is related to the lifting theory from pairs of elliptic cusp forms initiated by Y. Ihara in 1964 in the case of compact twist, but no such construction is known in the case of non-split symplectic groups corresponding to quaternion hermitian groups over indefinite quaternion algebras and this is new in that sense.

著者関連情報

この記事は最新の被引用情報を取得できません。

© 2017 The Mathematical Society of Japan
前の記事 次の記事
feedback
Top