2017 年 69 巻 3 号 p. 1235-1246
We consider a holomorphic foliation ℱ of codimension k ≥ 1 on a homogeneous compact Kähler manifold X of dimension n > k. Assuming that the singular set Sing(ℱ) of ℱ is contained in an absolutely k-convex domain U ⊂ X, we prove that the determinant of normal bundle det(Nℱ) of ℱ cannot be an ample line bundle, provided [n/k] ≥ 2k + 3. Here [n/k] denotes the largest integer ≤ n/k.
この記事は最新の被引用情報を取得できません。